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Abstract. The Epistemic Uncertainty Project of Sandia National 

Laboratories (NM, USA) proposed two challenge problems intended 

to assess the applicability and the relevant merits of modern 

mathematical theories of uncertainty in reliability engineering and risk 

analyses. This paper proposes a solution to Problem B: the response of 

a mechanical system with uncertain parameters. Random Set Theory is 

used to cope with both imprecision and dissonance affecting the 

available information. Imprecision results in an envelope of CDFs of 

the system response bounded by an Upper CDF and a Lower CDF. 

Different types of parameter dicretizations are introduced. It is shown 

that: (i) when the system response presents extrema in the range of 

parameters considered, it is better to increase the fineness of the 

discretization than to invoke a global optimization tool; (ii) the 

response expectation differed by less than 0.5% when the number of 

function calls was increased 15.7 times; (iii) larger differences (4-5%) 

were obtained for the lower tails of the CDFs of the response. Further 

research is necessary to investigate (i) parameter discretizations aimed 

at increasing the accuracy of the CDFs lower tails; (ii) the role of 

correlation in information composition. 
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1. Introduction 

The Epistemic Uncertainty Project was formed at Sandia National Laboratories (NM, USA) to 

investigate the applicability and usefulness of some of the modern mathematical theories of uncertainty 

in the context of epistemic uncertainty (lack of knowledge), as opposed to aleatory uncertainty (random 

processes). 

In order to assess the applicability and relevant merits of these theories in reliability engineering and 

risk analyses, two challenge problems were proposed by Oberkampf et al. (2001). This paper proposes 

a solution to Challenge Problem B, which deals with the response of a mass-spring-damper system 

acted on by a harmonic forcing. The assigned information on the parameters controlling the system 

response is affected either by dissonance or by imprecision, or by both dissonance and imprecision as 

defined hereafter (Klir, 1989). By dissonance we mean “the disagreement resulting from the attempt to 

classify an element of a given universal set into two or more disjoint subsets of interest under total or 

partial ignorance regarding relevant characteristics of the element”. By imprecision (or non-specificity) 

we mean “the variety of alternatives that in a given situation are left unspecified’. 

As shown by Walley (1991): (i) the amount of information concerning an event is more closely related 

to its degree of imprecision, rather than to its degree of dissonance; (ii) imprecision can be reconciled 

with coherence and rationality and is necessary when reasoning in situations of little information. 

Problem B is detailed in Section 2, and presents two main issues: 

1) How to model the uncertainty affecting the information available on each parameter. 

2) How to propagate uncertainty to the system response, which must be treated as a “black box” 

(these are actually two sub-issues). 
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In the approach presented herein, Issue 1 is dealt with by modeling each parameter by means of a 

Random Set; the basic definition of a Random Set is given in the Appendix. Section 3 illustrates this 

approach.  

Issue 2 is dealt with in Section 4 by means of the Extension Principle for Random Sets; for 

computational reasons (the system response must be treated as a black box), the random set 

constraining each parameter is discretized, so that the focal elements are finite in number. 

Both the uncertainty modeling and the computational aspects of the proposed procedure are discussed. 

In order to allow easy comparison with procedures used by other authors, numerical values are given 

for the obtained results. 

2. Problem statement 

Oberkampf et al. (2001) consider a linear mass-spring-damper system subjected to a harmonic external 

force as depicted in Figure 1. Let: 

• m be the mass. 

• k be the spring stiffness. 

• c be the damper viscosity. 

• ω be the circular frequency of the applied force. 

 

The four parameters c, k, m, and ω are independent, i.e. knowledge about the value of one parameter 

implies nothing about the value of the other. The information on each parameter is as follows: 

• Parameter m: as shown in Figure 2, m is given by a triangular probability distribution defined on 

the interval [mmin, mmax] = [10, 12], with a mode mmod = 11. 

• Parameter k: information on k is given by 3 independent and equally credible sources of 

information. Each source agrees that k is given by a triangular distribution. However, each 
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source specifies closed intervals, Mini, Modi, and Maxi of possible values of the minimum, kmin, 

mode, kmode, and maximum value, kmax, respectively, as follows (Figures 3a-3c): 

Min1 = [90, 100]; Mod1 = [150, 160]; Max1 = [200, 210] 

Min2 = [80, 110]; Mod2 = [140, 170]; Max2 = [200, 220] 

Min3 = [60, 120]; Mod3 = [120, 180]; Max3 = [190, 230] 

 The relationship among these values is: 

kmin ≤ kmode ≤ kmax  and  kmin < kmax (1) 

Finally, Mini, Modi, and Maxi are consistent collections of intervals, i.e.: 

∅≠
=
I

3

1i
iMin , ∅≠

=
I

3

1i
iMod , ∅≠

=
I

3

1i
iMax  (2) 

• Parameter c: information on c is given by 3 independent and equally credible sources of 

information. As illustrated in Figure 4, each source specifies a closed interval Cj of possible 

values of c as follows: 

C1 = [5, 10] 

C2 = [15, 20] 

C3 = [25, 25] 

{Cj} is an arbitrary collection of intervals, i.e. there is no assumed overlap or relationship 

among any of the intervals of the collection. 

• Parameter ω: as depicted in Figure 5, information on ω is given by a triangular probability 

distribution whose minimum value, ωmin is the interval [2, 2.3], whose mode value, ωmod is the 

interval [2.5, 2.7], and whose maximum value, ωmax is the interval [3.0, 3.5]. The relationship 

among these values is: 
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ωmin ≤ ωmode ≤ ωmax  and  ωmin < ωmax (3) 

 

The steady state magnification factor Ds is defined as the ratio of the amplitude of the steady-state 

response of the system to the static displacement of the system (Eq. 26 in Oberkampf et al., 2001): 

( ) ( )22 ωω cmk

k
Ds

+−
=  (4) 

We notice that the external load amplitude does not appear in Eq. (4). The objective of this problem is 

to quantify the uncertainty in the steady-state magnification factor Ds, given the stated information for 

the problem. 

3. Modeling the uncertainty affecting the parameters 

In the following, two discretizations will be used, namely a coarser one (Discretization A), and a finer 

one (Discretization B). 

3.1 Parameter m 

Parameter m is assigned by means of its probability density function, and therefore is only affected by 

dissonance. As shown in Tonon et al. (2000b), when all parameters of a given model are assigned by 

means of their PDFs (or their joint PDF), Random Set Theory can be used to efficiently bracket the 

results of Monte Carlo simulations. As far as parameter m is concerned, its discretization into a random 

set is performed for computational purposes only.  

The procedure is as follows (Tonon et al. 2000b): 

1) Discretize intervals [mmin, mmod] and [mmod, mmax] into n1 and n2 subintervals Am,i = [ai, bi], 

respectively. Each subinterval Am,i is treated as a focal element. 
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2) Let p(m) be the PDF of m, and Fm(m) the CDF of m. Calculate the basic probability assignment 

Mm(Am,i) for focal element Am,i as: 

( ) ( ) ( ) ( )imim

A

imm aFbFdmmpAM

im

−== ∫
,

,  (5) 

With the assigned numerical values, one obtains: 

( ) ( ) ( )[ ] ],[2020
2
1

modmin,, mmAifaabbAM imiiiiimm ∈−−−=  (6a) 

( ) ( ) ( )[ ] ],[2424
2
1

maxmod,, mmAifaabbAM imiiiiimm ∈−++−=  (6b) 

Tables 1.a and 1.b give the random sets of parameter m for Discretizations A (n1 = n2 = 5) and B (n1 = 

n2 = 10), respectively. Figures 6.a and 6.b depict the CDF of m along with the Lower Cumulative and 

Upper Cumulative Distribution Functions calculated by means of Eqs. (A.7a-b) for Discretizations A 

and B, respectively. 

3.2 Parameter k 

Parameter k is assigned by means of three bodies of evidence, each affected by both dissonance and 

imprecision. Dissonance and imprecision will be dealt with by discretizing each body of evidence by 

means of a random set. The problem of combining different bodies of evidence is an open one within 

Random Set Theory, and we will resort to Dempster’s rule of combination, as will be justified below. 

3.2.1 Dissonance and imprecision 

Because the minimum, median and maximum values are assigned as compact intervals, for each source 

of information, there is an envelope of triangular distributions compatible with the given information.  
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For the i-th source of information, the CDFs belonging to such an envelope are bounded by an upper 

CDF, Uk,i, and a lower CDF, Lk,i. Uk,i is defined by the triangular distribution in the interval 





ii MaxMin
min,min  

with mode 
iMod

min . Lk,i is defined by the triangular distribution in the interval 





ii MaxMin
max,max  with mode 

iMod
max . With the assigned numerical values, one obtains: 

( ) [ ]
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kif
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kif
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( ) [ ]
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Because Uk,i, and Lk,i may be generic functions and are not to satisfy the second equalities in Eqs. (A.6), 

in general, Uk,i, and Lk,i are not Belief and Plausibility functions of a random set. However, since the 

system response must be treated as a black box, each parameter must be discretized in any case. 

Therefore, we propose to discretize each parameter in such a way that its upper and lower probabilities, 

Uk,i, and Lk,i, are Belief and Plausibility functions, respectively, of a random set (Fk,i, Mk,i). 

Two discretization methods are proposed: 

• Averaging Discretization Method (ADM). 

• Outer Discretization Method (ODM). 

 

Consider Figures 7a and 7b. In the first step of both methods, the [0, 1] ordinate intervals of Uk,i and 

Lk,i are both discretized into n subintervals of length Mj > 0 (j = 1,…,n); for example, n = 5 in Figures 

7. By definition, let M0 := 0, and let Uk,i
-1 and Lk,i

-1 indicate the inverse functions of Uk,i and Lk,i, 

respectively. 

According to the ADM, the j-th focal element of (Fk,i, Mk,i) is the interval (see Figure 7a): 


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





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−

2
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1
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1
,,,

j
j

s

sik
j

j

s

sikjik
M

ML
M

MUA          j = 1…,n (13.a) 

and its basic probability assignment is: 

Mk,i(Ak,i,j) = Mj (13.b) 
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In the following, as a first approach to the problem in hand, subintervals of equal length 1/n are used. In 

Discretization A, n = 10, whereas in Discretization B, n = 20. Then, Eqs. (13.a) and (13.b) simplify as, 

respectively:  














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

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 −⋅




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








 −⋅= −−

2

11
,

2

11 1
,

1
,,, j

n
Lj

n
UA ikikjik             j = 1…,n (13.c) 

Mk,i(Ak,i,j) = 1/n (13.d) 

 

According to the ODM, the j-th focal element of (Fk,i, Mk,i) is the interval (see Figure 7b): 
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where: 

( ) ( )xUU ik
x
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,
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1
, lim:0 −
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( ) ( )xLL ik
x

ik
1

,
1

1
, lim:1 −
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− =   

and its basic probability assignment is: 

Mk,i(Ak,i,j) = Mj (14.b) 

If subintervals of equal length 1/n are used, then Eqs. (14.a) and (14.b) simplify as, respectively:  

( ) ( ) 







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
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Mk,i(Ak,i,j) = 1/n (14.d) 
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ADM averages Uk,i and Lk,i, and therefore it is very effective for calculating the expectation of a 

parameter or the expectation of its image through a function; however, as shown below, it may give a 

poor approximation to the tails.  

On the other hand, the ODM ensures that Fupp(k) ≥ Uk,i(k) and that  

Flow(k) ≤ Lk,i(k). However, at present, it has not been proven that the same inclusions apply to the 

images of (Fk,i, Mk,i) and of Uk,i and Lk,i through a generic function. Also, ODM may severely 

overestimate Uk,i and understimate Lk,i(k). Therefore, in the following, ADM will be used, and a deeper 

comparison between ADM and ODM will be the subject of a future paper. 

Tables 2a and 2b give the focal elements for Discretizations A and B, respectively; in each table, 

columns 2, 3, and 4 are relevant to the first, second, and third source of information, respectively. 

Figures 8, 9, and 10 plot Uk,i and Lk,i, along with Fupp, Flow, and the focal elements for the first, second, 

and third source of information, respectively. They confirm that, for the i-th source of information, Fupp 

and Flow calculated by means of Eqs. (A.7a-b) are a stepwise approximation to Uk,i and Lk,i, 

respectively. 

3.2.2 Combination of the three bodies of evidence 

Within Random Set Theory, the combination of two or more bodies of evidence is still an open and 

unsolved problem. Within Evidence Theory, and, more broadly, within axiomatic approximate 

reasoning theories, several rules have been proposed (and criticized) in the literature and have been 

recently surveyed and contrasted by Sentz and Ferson (2002). This study confirmed that Dempster’s 

rule of combination (Dempster, 1967) performs satisfactorily under situations of low conflict, in which 

each information source is equally reliable and all information sources are independent (more precisely, 

conditionally independent according to Walley (1991, page 276)) and consistent (Bernardini, 1999).  



 F. Tonon 2002 

File:C:\My works\Articoli Fulvio\Random Sets\Sandia\Paper\Paper P 17, Using Random Set Theory to solve Challenge Problem B.doc; print:7/29/02 10:02:00 PM 11

As already stated in Section 2, the problem statement (Oberkampf et al., 2001) specifies that the three 

information sources are independent, equally credible, and consistent (see Eq. (3)). Therefore, the three 

random sets (Fk,i, Mk,i), i = 1, 2, 3 are combined into a unique random set (Fk, Mk) by extending to 

three random sets the Dempster’s rule of combination found in textbooks (e.g. Klir and Yuan, 1995) as 

follows: 

( )
( ) ( ) ( )

K

DMCMBM

AM DCBA
kkk

k −

⋅⋅
=

∑
∩∩=

1

3,2,1,

 (15) 

for all ∅≠A , and ( ) 0≠AM k , where: 

( ) ( ) ( )∑
∅=∩∩

⋅⋅=
DCB

kkk DMCMBMK 3,2,1,  (16) 

According to Klir and Yuan (1995), the Dempster’s rule of combination rests on the same ground used 

to justify the joint probability distribution of independent variables starting from their marginal 

distributions. However, since some intersections of focal elements from the three sources of 

information may result in the same set A, one must sum the corresponding products to obtain Mk(A). 

Moreover, by dividing by the normalizing factor 1-K, one takes into account that some intersections of 

focal elements may be empty. 

By using Discretization A (resp. B), the final random set (Fk, Mk) contains 55 (resp. 216) focal 

elements; therefore, it was not possible to list all focal elements in tables. The Upper and the Lower 

CDFs relative to (Fk, Mk) are portrayed in Figures 11a and 11b for Discretizations A and B, 

respectively. We notice that the Upper and the Lower CDFs in Figures 11a and 11b look closer together 

than the Upper and Lower CDFs (or Uk,i and Lk,i) plotted in Figures 8, 9, and 10. In order to quantify 
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this phenomenon, let us introduce the L1 distance between two functions (e.g. Kolmogorov and Fomin, 

1957): 

( ) ( ) ( )∫
∞

∞−
−= dkkgkfgfd ,  (17) 

When applied to Upper and Lower CDFs (or to Uk,i and Lk,i) this distance is a measure of the 

imprecision affecting parameter k. One obtains: 

( ) 10, 1,1, =kk LUd  (18) 

( ) 67.26, 2,2, =kk LUd  (19) 

( ) 33.53, 3,3, =kk LUd  (20) 

For the final random set (Fk, Mk), distances take on the following values: 

• Discretization A: ( ) 68249.6, =lowupp FFd  (21) 

• Discretization B: ( ) 73472.6, =lowupp FFd  (22) 

The combination of the three independent bodies of information into (Fk, Mk) resulted in a less 

imprecise information than the starting bodies of information. This is because the Dempster’s rule of 

combination (Eqs. 15 and 16) retains as focal elements only the non-empty intersections among the 

focal elements of the three independent sources of information. As an extreme case, if the focal 

elements of the three sources of information had no common element (i.e. if there were no consensus 

among the three sources of information), (Fk, Mk) would contain no focal element, i.e. no information 

on k consistent with the three sources of information would be available. 

From a computational viewpoint, we notice that the finer the discretization is, the larger the distance 

between Fupp and Flow is. For example, distance d increased by 7.8% when Discretization B was used 
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rather than Discretization A; at the same time, the number of focal elements increased by 293%. As 

discussed in Section 4.2 below, this behavior is attributable to the coarse approximation to the CDFs 

tails operated by Discretization A. 

3.3 Parameter c 

Parameter c is affected by both dissonance and imprecision. The available information conforms 

exactly to the definition of a random set as given in the Appendix, with focal elements: 

Ac,1 = C1 = [5, 10] (23) 

Ac,2 = C2 = [15, 20] (24) 

Ac,3 = C3 = [25, 25] (25) 

and with probability assignment: 

Mc(Ac,i) = 1/3,  i = 1, 2, 3 (26) 

3.4 Parameter ωω 

Parameter ω is affected by both dissonance and imprecision. By following the same procedure as in 

Section 3.2.1, one obtains: 

( ) [ ]
( ) ( ) [ ]





∈−⋅−⋅−

∈−⋅
=

3,5.22929.27071.32

5.2,222 2

ωωω

ωω
ω

if

if
U  (27) 

( ) [ ]
( ) ( ) [ ]





∈−⋅−⋅−

∈−⋅
=

5.3,7.2502.24798.404167.1

7.2,3.23.20833.2 2

ωωω

ωω
ω

if

if
L  (28) 

Random sets are constructed by using Eqs. (13c) and (13d), and by discretizing the [0, 1] ordinate 

intervals of Uω and Lω by means of 10 intervals (Discretization A) and 20 intervals (Discretization B). 
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The results are given in Tables 3a and 3b for Discretizations A and B, respectively, whereas Figures 

12a and 12b illustrate the Upper and the Lower CDFs obtained with Discretizations A and B, 

respectively. 

3.5 Random relation constraining all parameters 

Each parameter is now constrained by a random set. In the problem statement, the parameters are stated 

to be independent. In Probability Theory, the joint probability distribution of n independent random 

variables (x1,…, xn) can be calculated starting from the marginal distributions as follows: 

( ) ( ) ( )nn xpxpxxp ⋅⋅= ...,..., 11  (29) 

Eq. (29) is straightforwardly extended to variables constrained by random sets and the resulting random 

relation is called stochastically decomposable random Cartesian product (Dubois and Prade, 1991). 

Let Mi(Ai) be the basic probability assignment of the i-th parameter. Then the focal elements of the 

stochastically decomposable random relation (F, M) are all Cartesian products A= nAA ××,...,1 , and the 

joint basic probability assignment is defined as: 

( ) ( ) ( )nnn AMAMAAM ⋅⋅=×× ...,..., 111  (30) 

More explicitly, in our case: 

F = { }lhjiofnscombinatioallforAAAAA lhcjkim ,,,,,,,, ω×××=  (31.a) 

( ) ( ) ( ) ( ) ( )lhccjkkimmlhcjkim AMAMAMAMAAAAAM ,,,,,,,, ωωω ⋅⋅⋅=×××=  (31.b) 
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4. Extending the parameter uncertainty through function Ds 

The extension principle for random sets (Eqs. A.8a and A.8b) is used to map the random relation  

(F, M) defined in Eqs. (31.a) and (31.b) to the mechanical system response through function Ds (Eq. 4). 

This extension principle is the straightforward extension to the range of a function used in Set Theory 

(Dubois and Prade, 1991) and, when (F, M) is a stochastically decomposable random Cartesian 

product, it specializes in: 

R= ( ){ }lhcjkims AAAADR ,,,, ,,, ω=   (31.c)   

( ) ( ) ( ) ( ) ( ) ( )












=⋅⋅⋅= ∑ lhcjkimslhcjkim AAAADRAMAMAMAMR ,,,,,,,, ,,,| ωωρ (31.d) 

As pointed out by Dubois and Prade (1991) this is the definition of a function of stochastically 

independent random-set valued arguments, as first suggested by Yager (1986). 

4.1 Computational aspects 

4.1.1 Calculation of the image of a focal element 

Eq. (31.c) requires the calculation of the image of a focal element Ai through function Ds. This entails 

solving the two global optimization problems: 

],[)( iiis rlAD =   where (32.a) 

( )uDl s
Au

i
i∈

= min  (32.b) 

( )uDr s
Au

i
i∈

= max  (32.c) 
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Because Ai is the Cartesian product of 4 intervals, it is a 4-dimensional box with 24 vertices. Tonon et 

al. (2000b) discuss methods for solving problems (32.b) and (32.c) when monotonicity properties of 

function Ds are known.  

If monotonicity properties of function Ds are not known, then it is proposed to calculate function Ds at 

the 16 vertices vi,j of the 4-dimensional box Ai, and to assume: 

( ){ }16,...,1,min , == jvDl jisi  (33.a) 

( ){ }16,...,1,max , == jvDr jisi  (33.b) 

If Ds has no extreme point in the interior of Ai or on its edges, then Eqs. (33.a) and (33.b) are correct, 

and are simply the application of the vertex method (Dong and Shah, 1987; Dong and Wang, 1987; 

Dong et al. 1987). If, on the other hand, Ds has one or more extreme points in the interior of Ai or on its 

edges, then Eqs. (33.a) and (33.b) can be taken as approximations to the true global extreme values; as 

the discretizations introduced in Section 3 become finer, the accuracy of these approximations 

increases.  

It is the author’s opinion that, from a computational viewpoint, it is more efficient to increase the 

fineness of the parameter discretizations introduced in Section 3 than to invoke a global optimization 

tool at each focal element image calculation. Indeed, by increasing the fineness of the parameter 

discretizations, one achieves three objectives: 

1) A better approximation to the assigned parameter distributions because the number of focal 

elements of each parameter increases. 

2) A finer granularity of the CDFs of Ds, see also Section 4.1.2. 

3) A better approximation to the global maxima and minima of function Ds because focal elements 

Ai become smaller. 
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For example, in the parameter ranges considered here, function Ds is an increasing function of m, a 

decreasing function of c, an increasing function of ω, but it is not a monotonic function of k 

(resonance). Therefore, the maximum value of Ds is achieved on an edge of Ai.  

For Discretization A, the exact maximum value of Ds in U iA  is 7.937404847026513, and the 

maximum value calculated by means of Eq. (33.b) in U iA is 7.936812991685837, with a relative 

difference of 7.4⋅10-5. 

For Discretization B, the exact maximum value of Ds in U iA is 8.090234385162086, and the 

maximum value calculated by means of Eq. (33.b) in U iA  is 8.090207265232385, with a relative 

difference of 3.3⋅10-6. 

4.1.2 Granularity of the CDFs of function Ds 

Once the image (R,ρ) of (F, M) through function Ds has been calculated by means of the extension 

principle, it is possible to calculate the Upper and the Lower CDFs of Ds by means of Eqs. (A.7a) and 

(A.7b). 

Let nm, nk, nc, nω be the number of focal elements for parameters m, k, c, and ω, respectively. Unless 

some focal elements Ai have the same image through function Ds, the granularity of the CDFs of 

function Ds is in the order of 1/(nm⋅nk⋅nc⋅nω). 

For example, for Discretization A, the granularity is in the order of 10-5, whereas for Discretization B, 

the granularity is in the order of 10-6. 

If the CDFs of a particular value of Ds, say Ds*, are the only results of interest, as opposed to the 

complete CDFs, then a special technique can be used (Tonon et al., 2000b), which can be summarized 

as follows.  
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At first, a coarse parameter discretization is used. The focal elements Ai whose ri in Eq. (32.a) is less 

than Ds* need not be further discretized because their discretizations will always map to the left of Ds* 

on the real line, so that their contribution to the CDFs of Ds* will not change (see Eqs. A.7a and A.7b). 

Likewise, the focal elements Ai whose li in Eq. (32.a) is greater than Ds* need not be further discretized 

because their discretizations will always map to the right of Ds* on the real line, so that they do not 

contribute to the CDFs of Ds* altogether (see Eqs. A.7a and A.7b). The only focal elements Ai that need 

to be further discretized are those such that Ds* ∈ [li, ri]. As shown in (Tonon et al., 2000b), this 

procedure leads to a computational savings of orders of magnitudes in the number of function calls as 

compared to the calculation of the complete CDFs. 

4.2 Results 

The imprecision affecting parameters k, c, and ω is mapped through function Ds, and consequently the 

CDF of Ds is not unique, but is bounded between an upper and a lower bound (Eqs. (A.7a) and (A.7b)). 

Figures 13a and 13b show the CDFs of the dependent variable Ds for Discretizations A and B, 

respectively. The expectation of Ds for Discretizations A and B can be calculated by means of Eq. 

(A.7c): 

• Discretization A: µA = [1.58618, 2.13159] 

• Discretization B: µB = [1.59059, 2.12184] 

and their relative differences are as follows: 

( ) %28.0min/minmin =− AAB µµµ  (34.a) 

( ) %46.0max/maxmax −=− AAB µµµ  (34.b) 

Although the number of Ds function calls used in Discretization B is 15.71 times the respective number 

used in Discretization A, the relative differences between minimum and maximum values of the 
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expectations are less than 0.5%. This is confirmed by the fact that, if plotted on the same graph, the 

Upper (resp. Lower) CDF for Discretization A is indistinguishable from the Upper (resp. Lower) CDF 

for Discretization B.   

For verification purposes, Tables 4a and 4b give values of the Upper and the Lower CDFs, respectively, 

calculated at selected abscissas by means of Discretizations A and B. Columns 4 in Tables 4a and 4b 

present the relative differences between the CDFs calculated by means of Discretizations A and B, 

respectively. As for the Upper CDF (Table 4a), the relative difference is always positive, and 

diminishes as Ds increases. When the Lower CDF is considered (Table 4b), the relative difference 

diminishes and changes sign as Ds increases: it is positive for low values of Ds, and negative for larger 

values of Ds. 

These trends are attributable to the uniform step used in the discretization of the three sources of 

information on k (Section 3.2). In fact, consider Figures 8, 9, and 10. The lower tails of the CDFs of k 

grow slowly, and therefore the first focal element of Discretization A is only a rough approximation to 

the lower tails of the CDFs, and it misses the lower extreme values of k. The central parts of the CDFs 

of k grow fast, and the approximations by means of focal elements are more accurate. Therefore, 

because the CDFs of Ds are cumulative functions, the effect of the lower extreme values of k is less 

significant for larger values of Ds. Likewise, the upper tails of the CDFs of k grow slowly, and thus the 

tenth focal element of Discretization A is only a rough approximation to the upper tails of the CDFs, 

and it misses the extreme values of k. This causes the change in sign in the relative difference between 

the Lower CDFs of Ds in Table 4b. 

5. Conclusions and future work 

In the assigned problem formulation, the parameters controlling the response of a mechanical system 

were assumed to be affected by both dissonance and imprecision. In the procedure proposed herein, 
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both types of uncertainty were propagated to the mechanical system response by means of Random Set 

Theory. As a result, Upper and Lower Cumulative Distribution Functions could be calculated for the 

mechanical system response, that are an envelope to all CDFs compatible with the available 

information on the parameters. 

In order for the system response to be treated as a “black box”, different methods were introduced for 

discretizing the parameters. Each method was tailored to the type of information available on a specific 

parameter. In any case considered, the result of each discretization method was a random set. 

When the system response presents maxima and minima in the range of parameters considered, the 

computational experience gained so far indicated that it is better to increase the fineness of the 

parameter discretization than to invoke a global optimization tool.   

The results obtained using two discretizations (a coarser one and a finer one) indicated that the 

expectation of the response differed by less than 0.5% when the number of function calls was increased 

15.6 times. 

However, larger differences (4-5%) were obtained for the lower tails of the CDFs of the response. 

Further research is necessary in order to investigate the benefits of a non-uniform discretization step for 

the parameters aimed at increasing the accuracy of the lower tails. 

When generic upper and lower probabilities are assigned to a parameter, two random-set  

approximation methods have been proposed, namely the Averaging Discretization Method (ADM) and 

the Outer Discretization Method (ODM). The relative merits of ADM versus ODM need to be further 

studied; the inclusion properties of ODM and of finer ODM discretizations must be investigated. 

In the assigned problem formulation, parameters and sources of information were assumed to be 

independent. Further work is necessary in order to advance our understanding and to investigate the 

computational aspects of correlation among the parameters.  
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8. Appendix 

Suppose N observations were made of a parameter u∈U, each of which resulted in an imprecise (non-

specific) measurement given by a set A of values. Let ni denote the number of occurrences of the set 

Ai⊆U, and let P(U) denote the set of all the subsets of U (power set of U). A frequency function M can 

be defined, called basic probability assignment, such that: 

M: P(U)→[0,1] ;  (A.1) 

( ) 0=∅M  ;  (A.2) 

( )
( )

1=∑
∈ UA

AM
P

 ;  (A.3) 

(In the literature, a lower-case m is often used to indicate the basic probability assignment; however, a 

lower-case m is here used to indicate the mass of the mechanical system). 

According to Dempster (1967), this function can be obtained as follows. Consider a probability 

measure P(z) defined on a universal set Z (which can be thought of as the set of our observations) 

related to U (the set of the values of our measurements) through a multivalued (one-to-many) 

mapping Γ :Z→P(U). Then the basic probability assignment is: 

M(Ai)= P(zi) = ni/N                    (A.4) 

This multivalued mapping expresses the imprecision of the measurement experienced during each 

observation, i.e. our inability to attach a single number to each observation. So, for each set A∈P(U), 

the value M(Ai) expresses the probability of zi = Γ-1(Ai) (zi ∈ Z) and it does not exclude that the subsets 

of Ai can get additional probability deriving from other subsets B of U such that Ai∩B≠∅. If M(Ai)>0 
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(i.e. if Ai has occurred at least once), Ai is said focal element. A random set is the pair (F, M) where F 

is the family of all focal elements. If u is a vector of two or more parameters, (F, M) is called random 

relation. 

Because of the presence of imprecision, it is not possible to calculate the probability of a generic u∈U 

or of a generic subset E⊆U, but only a lower and an upper bound on this probability:  

 Bel(E) ≤ Pro (E) ≤ Pl(E) (A.5) 

where, denoted Ec the complement of E:  

( ) ( ) ( )Bel E m A Pl Ei
A A E

c

i i

= = −
⊆

∑
:

1                        (A.6a) 

( ) ( ) ( )c

EAA
i EBelAmEPl

ii

−== ∑
≠∅∩

1
:

                   (A.6b) 

Bel(E) is called belief measure and is the sum of the frequencies of those focal elements contained in E 

and whose occurrence must then lead to the claim that u∈E. Pl(E) is said plausibility measure and is 

the sum of the frequencies of those focal elements having some element u in common with E and 

whose occurrence may lead to the claim that u∈E. 

When U is the real line, the two limit cases: 

(i) every weight M(A) is concentrated on the lower bound of the focal element A; 

(ii) every weight M(A) is concentrated on the upper bound of the focal element A, 

lead to two limit cumulative probability distribution functions (Bernardini, 1999): 

( ) { }( ) ( )
( )

∑
≥

=≤∈=
ii AuA

iupp AMuuUuPluF
inf:

':'  (A.7a) 

( ) { }( ) ( )
( )

∑
≥

=≤∈=
ii AuA

ilow AMuuUuBeluF
sup:

':'  (A.7b) 
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Eqs. (A.7a) and (A.7b) indicate that the calculation of the expectation µ makes sense and is the interval 

(Dempster, 1967): 

 ( ) ( )







⋅⋅= ∑∑

==

N

i
ii

N

i
ii AmAm

11

sup,infµ                    (A.7c) 

Let y=f(u), f : U→ Y be a function of u. One is interested in getting information on the random set 

(R,ρ), which is the image of (F,M) through f. This is accomplished by the following extension 

principle (Dubois and Prade, 1991): 

R= ( ){ }F∈= jji AAfR :   (A.8a)   

( ) ( )
( )

∑
=

=
jij AfRA

ji AMR
:

ρ . (A.8b) 
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Figure 1. Mass-spring-damper system acted on by an excitation function. 
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Figure 2. Probability distribution function of parameter m. 
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Figure 3. Probability distribution functions of parameter k: a) first source of information, b) second 
source of information, c) third source of information. 
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Figure 4. Intervals for parameter c. 
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Figure 5. Probability distribution functions of parameter ω. 
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Figure 6. Cumulative Distribution Function (Fm) and Upper (Fupp) and Lower (Flow) CDFs of 
parameter m: a) Upper and Lower CDFs obtained with Discretization A, b) Upper and Lower CDFs 

obtained with Discretization B. 
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(a) 

 
 
 
 

 
(b) 

 
Figure 7. Discretization of CDFs U and L by means of a random set with 5 focal elements Ai. The 
Upper (Fupp) and Lower (Flow) CDFs of the random set are also shown. a) Averaging Discretization 

Method (ADM); b) Outer Discretization Method (ODM). 



 F. Tonon 2002 

File:C:\My works\Articoli Fulvio\Random Sets\Sandia\Paper\Paper P 17, Using Random Set Theory to solve Challenge Problem B.doc; print:7/29/02 10:02:00 PM 33

 

 
(a) 

 
 

 
(b) 

 
 

Figure 8. Upper (Uk,1) and Lower (Lk,1) CDFs of parameter k according to the first source of 
information: a) focal elements Ak,1,j for Discretization A and Discretization A of the Upper CDF (Fupp) 

and of the Lower CDF (Flow); b) focal elements Ak,1,j for Discretization B, Discretization B of the Upper 
CDF (Fupp) and of the Lower CDF (Flow). 
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(a) 

 
 

 
(b) 

 
 

Figure 9. Upper (Uk,2) and Lower (Lk,2) CDFs of parameter k according to the second source of 
information: a) focal elements Ak,2,j for Discretization A and Discretization A of the Upper CDF (Fupp) 

and of the Lower CDF (Flow); b) focal elements Ak,2,j for Discretization B, Discretization B of the Upper 
CDF (Fupp) and of the Lower CDF (Flow). 
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Figure 10. Upper (Uk,3) and Lower (Lk,3) CDFs of parameter k according to the third source of 
information: a) focal elements Ak,3,j for Discretization A and Discretization A of the Upper CDF (Fupp) 

and of the Lower CDF (Flow); b) focal elements Ak,3,j for Discretization B, Discretization B of the Upper 
CDF (Fupp) and of the Lower CDF (Flow). 
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Figure 11. Upper (Fupp) and Lower (Flow) CDFs of parameter k obtained by combining the information 
from the three sources of information; a) Discretization A; b) Discretization B. 
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Figure 12. Upper (Uω) and Lower (Lω) CDFs of parameter ω: a) focal elements Aω,j for Discretization 
A and Discretization A of the Upper CDF (Fupp) and of the Lower CDF (Flow); b) focal elements Aω,j 

for Discretization B, Discretization B of the Upper CDF (Fupp) and of the Lower CDF (Flow). 
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Figure 13. Upper (Fupp) and Lower (Flow) CDFs of the mechanical system response Ds:  

a) Discretization A; b) Discretization B. 
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Table 1a. Discretization A of parameter m into 5 + 5 = 10 focal elements. 
Focal element Am,i Basic probability assignment Mm(Am,i) 

[10.0, 10.2] 0.02 
[10.2, 10.4] 0.06 
[10.4, 10.6] 0.1 
[10.6, 10.8] 0.14 
[10.8, 11.0] 0.18 
[11.0, 11.2] 0.18 
[11.2, 11.4] 0.14 
[11.4, 11.6] 0.1 
[11.6, 11.8] 0.06 
[11.8, 12.0] 0.02 

 
Table 1b. Discretization B of parameter m into 10 + 10 = 20 focal elements. 

Focal element Am,i Basic probability assignment Mm(Am,i) 
[10.0, 10.1] 0.005 
[10.1, 10.2] 0.015 
[10.2, 10.3] 0.025 
[10.3, 10.4] 0.035 
[10.4, 10.5] 0.045 
[10.5, 10.6] 0.055 
[10.6, 10.7] 0.065 
[10.7, 10.8] 0.075 
[10.8, 10.9] 0.085 
[10.9, 11.0] 0.095 
[11.0, 11.1] 0.095 
[11.1, 11.2] 0.085 
[11.2, 11.3] 0.075 
[11.3, 11.4] 0.065 
[11.4, 11.5] 0.055 
[11.5, 11.6] 0.045 
[11.6, 11.7] 0.035 
[11.7, 11.8] 0.025 
[11.8, 11.9] 0.015 
[11.9, 12.0] 0.005 
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Table 2a. Focal elements of parameter k for Discretization A. 
j Focal element Ak,1,j Focal element Ak,2,j Focal element Ak,3,j 
1 [108.1659, 118.1659] [98.9737, 128.1659] [79.7484, 138.1659] 
2 [121.4643, 131.4643] [112.8633, 141.4642] [94.2053, 151.4643] 
3 [130.6202, 140.6202] [122.4264, 150.6202] [104.1588, 160.6202] 
4 [138.0624, 148.0624] [130.1996, 158.0624] [112.2494, 168.0624] 
5 [144.4977, 154.4977] [136.9210, 164.4977] [119.2452, 174.4977] 
6 [150.2506, 160.2506] [143.0790, 170.2506] [126.0078, 180.2506] 
7 [156.1252, 166.1252] [149.8004, 176.1252] [133.5642, 186.1252] 
8 [162.9190, 172.9190] [157.5736, 182.9190] [142.3030, 192.9190] 
9 [171.2772, 181.2772] [167.1366, 191.2772] [153.0541, 201.2772] 
10 [183.4169, 193.4169] [181.0263, 203.4169] [168.6693, 213.4169] 

 
 

Table 2b. Focal elements of parameter k for Discretization B. 
j Focal element Ak,1,j Focal element Ak,2,j Focal element Ak,3,j 
1 [102.8452, 112.8452] [93.4164, 122.8452] [73.9642, 132.8452] 
2 [112.2486, 122.2486] [103.2379, 132.2486] [84.1868, 142.2486] 
3 [118.7228, 128.7228] [110.0000, 138.7228] [91.2250, 148.7228] 
4 [123.9853, 133.9853] [115.4965, 143.9853] [96.9458, 153.9853] 
5 [128.5357, 138.5357] [120.2492, 148.5357] [101.8927, 158.5357] 
6 [132.6028, 142.6028] [124.4972, 152.6028] [106.3141, 162.6028] 
7 [136.3141, 146.3141] [128.3735, 156.3141] [110.3487, 166.3141] 
8 [139.7493, 149.7493] [131.9615, 159.7493] [114.0833, 169.7493] 
9 [142.9622, 152.9622] [135.3173, 162.9622] [117.5760, 172.9622] 
10 [145.9911, 155.9911] [138.4808, 165.9911] [120.8806, 175.9911] 
11 [148.8642, 158.8642] [141.5192, 168.8642] [124.2543, 178.8642] 
12 [151.6523, 161.6523] [144.6827, 171.6523] [127.8108, 181.6523] 
13 [154.5852, 164.5852] [148.0385, 174.5852] [131.5834, 184.5852] 
14 [157.7212, 167.7212] [151.6264, 177.7212] [135.6171, 187.7212] 
15 [161.1091, 171.1091] [155.5028, 181.1091] [139.9750, 191.1091] 
16 [164.8219, 174.8219] [159.7508, 184.8219] [144.7507, 194.8219] 
17 [168.9759, 178.9759] [164.5035, 188.9759] [150.0939, 198.9759] 
18 [173.7798, 183.7798] [167.0000, 193.7798] [156.2731, 203.7798] 
19 [179.6899, 189.6899] [176.7620, 199.6899] [163.8752, 209.6899] 
20 [188.2740, 198.2740] [186.5836, 208.2740] [174.9169, 218.2740] 
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Table 3a. Focal elements of parameter ω for Discretization A.  

Focal element Aω,j Basic probability assignment  
Mω(Aω,j) 

[2.1581, 2.4549] 0.1 
[2.2739, 2.5683] 0.1 
[2.3535, 2.6464] 0.1 
[2.4183, 2.7100] 0.1 
[2.4743, 2.7734] 0.1 
[2.5256, 2.8427] 0.1 
[2.5817, 2.9203] 0.1 
[2.6464, 3.0101] 0.1 
[2.7261, 3.1205] 0.1 
[2.8419, 3.2809] 0.1 

 
 

Table 3b. Focal elements of parameter ω for Discretization B. 

Focal element Aωj Basic probability assignment  
Mω(Aωj) 

[2.1118, 2.4095] 0.05 
[2.1936, 2.4897] 0.05 
[2.2500, 2.5449] 0.05 
[2.2958, 2.5898] 0.05 
[2.3354, 2.6286] 0.05 
[2.3708, 2.6633] 0.05 
[2.4031, 2.6949] 0.05 
[2.4330, 2.7254] 0.05 
[2.4601, 2.7570] 0.05 
[2.4873, 2.7900] 0.05 
[2.5127, 2.8247] 0.05 
[2.5390, 2.8612] 0.05 
[2.5670, 2.9000] 0.05 
[2.5969, 2.9414] 0.05 
[2.6292, 2.9862] 0.05 
[2.6646, 3.0352] 0.05 
[2.7042, 3.0901] 0.05 
[2.7500, 3.1536] 0.05 
[2.8063, 3.2317] 0.05 
[2.8882, 3.3451] 0.05 
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Table 4a. Upper CDF calculated by means of Discretization A (column 2) and  

Discretization B (column 3), and their relative difference. 
Ds 
 

(1) 

Upper CDF, Discretization A 
 

(2) 

Upper CDF, Discretization B 
 

(3) 

[(2)-(3)]/(2)  
 

(%) 
1.4 0.1499 0.1454 2.9729 
1.6 0.6395 0.6323 1.1147 
1.8 0.8653 0.8619 0.3927 
2 0.9473 0.9444 0.3048 

 
Table 4b. Lower CDF calculated by means Discretization A (column 2) and  

Discretization B (column 3), and their relative difference. 
Ds 
 

(1) 

Lower CDF, Discretization A 
 

(2) 

Lower CDF, Discretization B 
 

(3) 

[(2)-(3)]/(2)  
 

(%) 
1.6 0.1995 0.2094 -4.9370 
1.8 0.4375 0.4423 -1.1022 
2 0.5721 0.5782 -1.0636 
3 0.9102 0.9128 -0.2808 
4 0.9633 0.9632 0.0089 
6 0.9907 0.9904 0.0285 

 
 


